
Relational inductive biases, deep learning, and

graph networks∗

Peter Battaglia et al.

2018

1 What

• The authors explore how we can combine relational inductive biases and
DL.

• They introduce graph network – a building block which generalises the
current approaches of neural networks operating on graphs.

• They discuss the future direction of the work on marrying DL and rela-
tional approach.

2 Why

We’ve seen a lot of progress in the research, but there is still a huge gap between
humans and our best models. The authors claim that this is due to the lack of
combinatorial generalisation, i.e. constructing new inferences, predictions, and
behaviours from known building blocks.

Humans are good at representing structure and reasoning about relations.
We are also good at finding hierarchies and thinking about things as something
composite of simpler blocks.

Some time ago people thought the relational approach was the Thing. Re-
cently we have seen a flood of DL research from the folks who do not care about
this old Thing. There is a lot of critiques recently which shows that smart
terminators are still too far away.

What if we take both of these two worlds and get an amazing generalisation
power of the relational algebra along with very powerful function approximators
and all the recent advances in machine learning research.

∗Notes by Vitaly Kurin https://yobibyte.github.io/. Thanks to most of the authors for
the paper sources (I copypaste long formulas and figures sometimes). And thanks to you all
for feedback. Stay tuned!

1

https://yobibyte.github.io/


3 How

3.1 Relational inductive biases

Let’s start with a bit of terminology.

• Structured X means that X is composed of some known building blocks.

• An entity is an element with attributes (e.g. size)

• A relation is a property between entities (e.g. ’bigger than’)

• A rule is a function that maps entities and relations to other entities and
relations.

Relational inductive bias (RIB) is not strictly defined, but implies impos-
ing additional constraints on relations and interactions among entities during
learning.

Inductive biases, though not relational, are already out there: network ar-
chitecture, dropout, regularisation etc. The relational inductive biases are also
kinda out there:

• For MLPs RIBs are quite weak, with units being entities and relations
being ’all-to-all’.

• Grid elements are entities in CNNs, the relations are local, the network
cares about locality and tries to be spatial translation invariant.

• For RNNs the timesteps are the entities, the relations are sequential and
we care about time translation invariance.

One cool thing about graph networks is that the relations and entities are
much more general. There are fewer assumptions here, actually, edges might
mean anything. Graph networks are node/edge permutations invariant.

The profit from RIB here comes not from the presence of something, but
rather from the absence. Why having connections everywhere as in MLP when
there is only a couple of connections that really matter?

3.2 Graph networks

Graph neural networks have been out there for a while, and authors give a
lot of references to reinforce this point. However, they want to unify existing
approaches and present the graph network block.

Here, by a graph, we assume a directed, attributed multi-graph with a global
attribute. A graph is a tuple G = (u, V, E), where V = {vi}i=1:Nv is a set of
nodes, E = {ek, rk, sk}k=1:Ne is the set of edges, and u is a global attribute,
ek is edge attributes, vi is node attributes. The graph is directed, so, the edge
direction matters with sk being the sender node, and rk being the receiever
node.

2



A GN block contains three “update” functions, φ, and three “aggregation”
functions, ρ,

e′
k = φe (ek,vrk ,vsk ,u)

v′
i = φv (ē′

i,vi,u)

u′ = φu (ē′, v̄′,u)

ē′
i = ρe→v (E′

i)

ē′ = ρe→u (E′)

v̄′ = ρv→u (V ′)

(1)

where E′
i = {(e′

k, rk, sk)}rk=i, k=1:Ne , V ′ = {v′
i}i=1:Nv , and E′ =

⋃
iE

′
i =

{(e′
k, rk, sk)}k=1:Ne . Aggregation functions must be input permutations invari-

ant and take any amount of input points.
What does it all mean? Everybody cares about the global graph attribute,

even the global graph attribute. Apart from that, every edge cares about its
attributes and attributes of the nodes it connects. A node, apart from the global
attribute, cares about the incoming edges and its attributes.

The update process works as follows:

• We update the edge attributes for each of the edges.

• Then for each of the nodes we aggregate incoming edge attributes and
update node attributes.

• Then we aggregate all the edges attributes, do the same with nodes and
update the global attribute.

The authors point out that it’s not necessarily to do the updates in the order
above. It can be, for instance, reversed.

So, why is all of this might help? First of all, an edge is a very general
thing. It just tells that the two nodes are somehow related, there are no restric-
tions whatsoever. Second, entities are invariant to permutations and we do not
need to learn all combinations possible. Finally, per-edge/per-node functions
are reused across all edges/nodes. The authors claim that this makes them au-
tomatically support some form of combinatorial generalisation. It is not clear
to me, actually.

3.3 Design principles for graph network architectures

Graph networks are flexible in terms of attributes representations we might
want to choose: tensors, sets, graphs etc. They will most likely depend on your
problem. Regarding the output, we can use edges, nodes or the global attributes
based on what we want to achieve.

Having all these possibilities means that we have to spend more time on our
model architectures when using GNs. Not like now when if it’s an image, use
CNNs, when it’s a sequence, use LSTM 1. At the same time, it looks like the
architecture choice is more principled in this case since there is not ’just two
more layers’ or ’add residual connection and use relu6 here’.

1Or two, that’s always better.

3



Regarding the question of how the input data is to be represented as a graph,
there are two possible options: the input contains the relational structure or the
relations must be inferred.

Apart from all above, we have to decide on the inner-block architecture:
what are edge/node/globals functions? The authors show how Graph Networks
unify some of the existing approaches, e.g. Message-Parsing neural network,
Non-Local neural network and some others. Finally, the authors show different
ways of combining graph network blocks: composition, encode-process-decode,
recurrent GN.

4 Discussion

In the final section, the authors show the empirical evidence of combinatorial
generalisation in different variants of models operating on graphs. They do
not forget about the limitations, e.g. there is no guarantee that GNs can solve
some classes of problems, such as discriminating between certain non-isomorphic
graphs.

Some important tools as recursion, control flow and conditional iteration are
not easy to represent on graphs. The authors point out that programs and other
’computer-like’ approaches might be more powerful for the notions above.

In the end, the paper shows some of the open questions in the domain and
some directions for tackling these issues:

• Where is the graph, Lebowski? Who provides us with it? DL is cool be-
cause it can work with raw inputs. Who does the raw→ graph conversion
here?

• How to adaptively change the graph during computation?

• How can interpretability profit from GNs?

5 Comments

• Disclaimer: before I’ve read this paper I had a very vague idea of what
this kind of models is. If I say, something is super novel but it’s not, it is
mostly due to my ignorance, but not the authors’ evil intent.

• Having said above, however, I do not like ’graph network’ term. I think
I got an idea, they try to unify current approaches and make something
default. But naming them ’graph networks’ feels like ’nothing similar was
there before’. Maybe that’s just me. They also say they removed ’neural’
from the term to show that they can be implemented via functions different
from NNs. Why did they leave ’network’ then? Or is is because a graph
is a network?

4



• I don’t really like the term combinatorial generalisation. It looks like
something really strictly defined, but in reality, it is not. Or I just missed
something about it. It looks like by combinatorial generalisation the au-
thors mean something like ’disentangled representations’ on the reasoning
level (also a vague thing x X). But it’s not completely clear.

• The paper has a huge reference section and that makes my inner Juergen
happy.

• The paper has a ’Limitations’ section, no joke! That’s so cool! And, actu-
ally, ’Open Questions’ section can be considered as ’Current Limitations’
as well.

• There is no code right now, but it should appear soon 2.

• Interesting, that, as the authors put it, one takeaway from the paper is
less about graphs and more about blending powerful DL methods with
structured representations.

2https://twitter.com/OriolVinyalsML/status/1006655938797932547

5

https://twitter.com/OriolVinyalsML/status/1006655938797932547

	What
	Why
	How
	Relational inductive biases
	Graph networks
	Design principles for graph network architectures

	Discussion
	Comments

