
The Kanerva Machine: a Generative Distributed

Memory∗

Wu et al.

2018

1 What

A memory augmented generative model, which applies VAEs[Kingma and Welling, 2013]
and a couple of other important ideas to improve Kanerva’s distributed memory
model.

End-to-end differentiable memory which quickly adapts to new data and can
generate similar samples. This memory is analytically tractable, which leads to
optimal on-line compression via a Bayesian update rule. The model is easier to
train than DNC, and it has a higher capacity (empirically shown on Omniglot
and CIFAR).

2 Why

We have seen a lot of progress in augmenting neural nets with memory recently.
However, we haven’t yet solved the problem of efficiently using the memory.
For instance, in DNCs [Graves et al., 2016] often collapse to reading/writing to
single slots (Have never heard of this before, where can I read about it?) We
would like to be able to learn more distributed strategies for using the memory
block.

Hopfield Net was a pioneer in storing data patterns in low-energy states of
a dynamic system. However, these models are constrained by the dimension-
ality of the input patterns. Boltzmann Machine lifts these constraints using
latent variables but is very costly for reading/writing. Kanerva’s model solves
this efficiency issue by introducing an addressing mechanism which relates to
a memory M . The size of this memory M does not depend on the input data
dimensionality. However, there are lots of assumptions on data (the authors
describe them in Appendix B), which limit the applicability on these models
in real life. The authors build upon Kanerva’s model applying VAE’s, analyt-
ically deriving Bayesian update rule for writing the memory, and learning the
addressing mechanism and test in on Omniglot/CIFAR datasets.

∗Notes by Vitaly Kurin https://yobibyte.github.io/

1

https://yobibyte.github.io/

3 How

In contrast to VAEs, we have two latent variables here: Z and Y . The former
is the latent representation of data X. The latter is the addressing variables
which help us to control the memory operations: pθ(zt|yt,M).

The model objective:

J =

∫
p(X,M) ln pθ (X |M) dMdX =

∫
p(X)p(M |X)

T∑
t=1

ln pθ (xt |M) dMdX

(1)
The three main moments we are to understand is how the generative model

works and how the inference model reads and updates the memory.
First, the joint distribution of the generative model:

pθ (X,Y, Z|M) =

T∏
t=1

pθ (xt, yt, zt|M) =

T∏
t=1

pθ (xt|zt) pθ (zt|yt,M) pθ (yt) (2)

, where M is the memory random K × C matrix p(M) = MN (R,U, V),
where R is a K × C matrix as the mean of M , U is a K × K matrix that
provides the covariance between rows of M , and V is a C ×C matrix providing
covariances between columns of M .

Then we compute the weights wt to control the memory access:

wt = bt
ᵀ ·A = f(yt)

ᵀ ·A (3)

where f(·) transforms yt and wt to (may be) non-Gaussian distributions.
zt prior depends on the memory:

pθ(zt|yt,M) = N
(
zt
∣∣wtᵀ ·M,σ2 IC

)
(4)

Second, what’s the probability of the adressing and latent data representa-
tion given the data and the memory state:

qφ (Y,Z|X,M) =

T∏
t=1

qφ (yt, zt|xt,M) =

T∏
t=1

qφ (zt|xt, yt,M) qφ (yt|xt) (5)

Lastly, how to update the memory?

qφ (M |X) =

∫
pθ (M,Y,Z|X) dZdY

=

∫
pθ(M |{y1, . . . , yT }, {z1, . . . , zT })

T∏
t=1

qφ(zt|xt)qφ(yt|xt) dztdyt

≈ pθ (M |{y1, . . . , yT }, {z1, . . . , zT })
∣∣∣
yt∼qφ(yt|xt),zt∼qφ(zt|xt)

(6)

2

Updating the memory means updating the matrices R and U :

∆← Z −W R (7)

Σc ←W U Σz ←W U W ᵀ + Σξ (8)

R← R+ Σc
ᵀ Σ−1z ∆ U ← U − Σc

ᵀΣ−1z Σc (9)

where ∆ is the prediction error before updating the memory, Σc is a T × C
matrix providing the cross-covariance between Z and M , Σξ is a T ×T diagonal
matrix whose diagonal elements are the noise variance σ2 and Σz is a T × T
matrix that encodes the covariance for z1, . . . , zT .

All above makes sense because (i) we have the linear Gaussian model, (ii)
Bayes’ rule provides an optimal trade off between preserving the old information
and writing the new one [MacKay, 2003].

4 Evaluation

The authors test their models comparing the performance with VAEs and DNCs
on Omniglot and CIFAR (which one?) for one-shot generation and denosing and
interpolation. They compare negative variational lower bound and demonstrate
that introducing memory helps a generative model to reduce the variational
lower bound. They also plot the histogram of weights controlling the memory
slots and show that they are widely distributed (most likely to show that this
is the opposite to DNCs’ collapsing to using one slot).

Though we should always take eyeballing with a grain of salt, the pics gener-
ated with the Kanerva machine are much less blurry and makes the VAE curse
less noticeable.

The main point of denoising/interpolation evaluation is that the proposed
model is able to iteratively recover the original image (since we can iteratively
sample the memory). As a nice bonus of having linear combinations of memory
slots as data representation, the weights are supposed to be meaningful and
more interpretable. They empirically show that interpolating between different
weights enables to smoothly change the produced images.

5 Comments

• Where can I read about DNCs collapsing to using only one memory slot
for reading/writing?

• I don’t fully get the second transition in Formula (3). Is it because we build
this graphical model saying that xt depends only on zt, not on memory/yt
directly. If this is true, then the phrase ’the joint distribution of the gen-
erative model can be factorised as’ is misleading. It should be something
like ’we can build the following graphical model where...’. I’m stuck here:

3

∏T
t=1 pθ(xt, yt, zt|M) =

∏T
t=1 pθ(yt)pθ(xt, zt|yt,M) =

∏T
t=1 pθ(xt|yt, zt,M)p(zt|yt,M)pθ(yt),

but in Formula (3), we see pθ(xt|zt), not p(xt|yt, zt,M).

• If I get it right, the addressing variables yt are also notated as A. It’s
confusing since the memory M is always uses as M , but yt are always
used instead A.

• The paper is extremely hard to grasp, but I suppose it’s just me who
doesn’t have enough experience with VAEs and similar models/problems.

• Can we apply all of this magic to RL? I’m not sure I understand the
concept of exchangeable episode. If it’s about the conditional independence
of xt given the memory, this looks like a markovian assumption and we
can proceed. If not (they say an exchangeable episode is a subset of an
entire dataset whose order doesn’t matter), this is bad for us. However,
we can try to apply this to GAIL where we train the discriminator on
state-action pairs, not on the trajectories.

References

[Graves et al., 2016] Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G., Grefenstette, E., Ra-
malho, T., Agapiou, J., et al. (2016). Hybrid computing using a neural net-
work with dynamic external memory. Nature, 538(7626):471.

[Kingma and Welling, 2013] Kingma, D. P. and Welling, M. (2013). Auto-
encoding variational bayes. arXiv preprint arXiv:1312.6114.

[MacKay, 2003] MacKay, D. J. (2003). Information theory, inference and learn-
ing algorithms. Cambridge university press.

4

	What
	Why
	How
	Evaluation
	Comments

