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Disclaimer

I am not a Graph Neural Networks expert. | want to share my excitement and make more
people aware of this amazing research direction.
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Graphs are everywhere
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Inductive biases examples

» Locality in CNN

» Sequential structure in RNN
» Locality in Nearest Neighbours
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Graph Neural Networks (GNN)

» GNN originated in [GMS05] and [SGT+08];
» [BHB™18] unifies a lot of types into Graph Networks (GN);

This talk focuses on GN only!
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What is a Graph Network?
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What is a Graph?

» Directed;

» Labeled;

» With the global attribute u;
» tuple (V, &, u,);

» | will call all of them entities;
> e=(s,r)\Ve e,

>

5",” is the set of all incoming edges to v;;
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Two main components of a GN
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Updater is a function which updates entities features
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Updater is a function which updates entities features

> edge updater: e/ = ¢°(ej, s;, ri, u)
> vertex updater: v/ = ¢*(v;, p° 7Y (EN), u)
» global updater: u' = ¢“(p°4(E), p ' H(V), u)
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What is an aggregator?

» a function working on sets

» the main trick of a GN;

» enables GN to work on different graph topologies;
» examples?
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Edge forward step, [BHB™ 18]
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Vertex forward step, [BHB™ 18]
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Global forward step, [BHB*18]




GN forward step

Algorithm 1 Steps of computation in a full GN block. [BHBT18]

function GRAPHNETWORK(E, V, u)
for ke {1...N¢} do
e, < ¢°(ek, Vv, Vs, u,)
end for
forie {1...N"} do
let gl/ = {(e;(, rk,sk)}rk:,., K=1:Ne
& < p*V (&)
Vi ¢V (€),vi,u)
end for
let V' ={Vv'},_
let £' = {(e}, ric )} oy e
& «— pe (g/)
¥ pv—>u (V/)
u — ¢! (e,v,u)
return (&', V' u')
end function

> 1. Compute updated edge attributes

> 2. Aggregate edge attributes per node
> 3. Compute updated node attributes

> 4. Aggregate edge attributes globally
> 5. Aggregate node attributes globally
> 6. Compute updated global attribute

Vitaly Kurin,
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GN computation graph
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Input graph defines the computation graph!

@®
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Let's see Graph Networks in action!
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Sort an array of real numbers
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Graph Encoding

(a) Input Graph (b) Target Graph
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Model Architecture

GT

G/
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Sorting task results
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Graph Networks as a tool

Vitaly Kurin, University of Oxford Graph Networks 23 /a1



Graph Networks for Supervised Learning
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Neural Message Passing for Quantum Chemistry

G] 12 Jun 2017
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Neural Message Passing for Quantum Chemistry

Justin Gilmer ' Samuel S. Schoenholz' Patrick F. Riley> Oriol Vinyals® George E. Dahl'

Abstract
Supervised learning on molecules has incredi-
ble potential to be useful in chemistry, drug dis-
covery, and materials science. Luckily, sev-
eral promising and closely related neural network
models invariant to molecular symmetries have
already been described in the literature. These
models learn a message passing algorithm and
aggregation procedure to compute a function of
their entire input graph. At this point, the next
step is to find a particularly effective variant of
this general approach and apply it to chemical
prediction benchmarks until we either solve them
or reach the limits of the approach. In this pa-
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Message Passing Neural Net
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~ 102 seconds

Figure 1. A Message Passing Neural Network predicts quantum
propesgiesiaarsorganic molecule by modeling a computationally
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Graph Networks for RL
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Reinforcement Learning in a nutshell

agent environment

from state s, take action a

get reward R, new state '

source: https://commons.wikimedia.org/wiki/File:R1_agent.png
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https://commons.wikimedia.org/wiki/File:Rl_agent.png

Graph networks as learnable physics engines for inference and control

Vitaly Ky

Graph Networks as Learnable Physics Engines for Inference and Control

G] 4 Jun 2018

in, Unjuatsity of Oxford

Alvaro Sanchez-Gonzalez ' Nicolas Heess ! Jost Tobias Springenberg ! Josh Merel! Martin Riedmiller !
Raia Hadsell! Peter Battaglia '

Abstract Pendulum  Cartpole Acrobot Swimmer6
Understanding and interacting with everyday
physical scenes requires rich knowledge about

n
the structure of the world, represented either im- . \ \

plicitly in a value or policy function, or explic- Cheetah Walker2d JACO
itly in a transition model. Here we introduce a
new class of learnable models—based on graph
networks—which implement an inductive bias
for object- and relation-centric representations of
complex, dynamical systems. Our results show
that as a forward model, our approach supports
accurate predictions from real and simulated data,
and surprisingly strong and efficient generaliza-
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NerveNet: Learning Structured Policy with Graph Neural Networks

Published as a conference paper at ICLR 2018

NERVENET: LEARNING STRUCTURED POLICY WITH
GRAPH NEURAL NETWORKS

Tingwu Wang ", Renjie Liao’, Jimmy Ba & Sanja Fidler
Department of Computer Science

University of Toronto

Vector Institute

{tingwuwang, rjliaoc}@cs.toronto.edu,
jimmy@psi.toronto.edu, fidler@cs.toronto.edu

ABSTRACT

We address the problem of learning structured policies for continuous control. In
traditional reinforcement learning, policies of agents are learned by multi-layer
perceptrons (MLPs) which take the concatenation of all observations from the en-
vironment as input for predicting actions. In this work, we propose NerveNet to
explicitly model the structure of an agent, which naturally takes the form of a
graph. Specifically, serving as the agent’s policy network, NerveNet first propa-
gates information over the structure of the agent and then predict actions for differ-
ent parts of the agent. In the experiments, we first show that our NerveNet is com-
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Multi-Agent Reinforcement Learning

agent environment

ﬁ) %)from state s, take action a

source: https://commons.wikimedia.org/wiki/File:R1_agent.png
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Relational Forward Models

Vitaly Kurin, University of Oxford

44v1 [cs.LG] 28 Sep 2018

RELATIONAL FORWARD MODELS FOR MULTI-AGENT

LEARNING
Andrea Tacchetti*!, H. Francis Song*', Pedro A. M. Mediano*'2, Vinicius Zambalrll1
Neil C. Rzlhmowuzl Thore Graepel', inick! & PeterW !
* denotes equal contribution
1 DeepMind

2 Imperial College London
{atacchet, songf, pmediano, vzambaldi
ncr, thore, botvinick, peterbattaglia}@google.com

ABSTRACT

The behavioral dynamics of multi-agent systems have a rich and orderly struc-
ture, which can be leveraged to understand these systems, and to improve how
artificial agents learn to operate in them. Here we introduce Relational Forward
Models (RFM) for multi-agent learning, networks that can learn to make accurate
predictions of agents future behavior in multi-agent environments. Because these
models operate on the discrete entities and relations present in the environment,
they produce interpretable intermediate representations which offer insights into
what drives agents’ behavior, and what events mediate the intensity and valence of
social interactions. Furthermore, we show that embedding RFM modules inside
agents results in faster learning systems compared to non-augmented baselines. As
more and more of the autonomous systems we develop and interact with become
multi-agent in nature, developmg richer analysn lools for characterizing how and
why agents make decisions is ingly necessary. N ping artifi-
cial agents that quickly and safely learn to coordinate with one anolher and with
humans in shared environments, is crucial.
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Each state of a MARL problem can be represented as a graph




Policies conditioned on graphs

—
Teammate
== Stop Gradient




Not all data is ready available in the form of a graph

WHERE ISZE/GRAPH
i/

imgfiip.com




Computational efficiency?

» Hard to batch with dynamic graphs;
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Theoretical limitations?

» Some of the phenomena are not well suited for graph representation

» Graph Networks are unable to solve some classes of problems, i.e. discriminating between
some non-isomorphic graphs.
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Practical considerations

Think of graphs as of data with some feeding mechanism
Batch

Padding becomes expensive;

torch.split hurts the backward pass A LOT;
Have to be integrated with traditional pipelines;

vvyVvyVvVYyyYyy

Visualisation is a Thing!
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To sum up

» There's Plenty of Room at the Bottom
» GN is a flexible instrument for injection of inductive biases

» Graph Networks are turning into a tool for supervised learning, unsupervised learning and
RL

» Jump on the bandwagon!
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Thanks!

» https://twitter.com/yOblbyte
> https://yobibyte.github.io/pages/paper-notes.html

» vitaly.kurin@magd.ox.ac.uk
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